Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Omics ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444371

RESUMO

The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.

2.
Interdiscip Sci ; 16(1): 91-103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37978116

RESUMO

Circular RNA is a single-stranded RNA with a closed-loop structure. In recent years, academic research has revealed that circular RNAs play critical roles in biological processes and are related to human diseases. The discovery of potential circRNAs as disease biomarkers and drug targets is crucial since it can help diagnose diseases in the early stages and be used to treat people. However, in conventional experimental methods, conducting experiments to detect associations between circular RNAs and diseases is time-consuming and costly. To overcome this problem, various computational methodologies are proposed to extract essential features for both circular RNAs and diseases and predict the associations. Studies showed that computational methods successfully predicted performance and made it possible to detect possible highly related circular RNAs for diseases. This study proposes a deep learning-based circRNA-disease association predictor methodology called DCDA, which uses multiple data sources to create circRNA and disease features and reveal hidden feature codings of a circular RNA-disease pair with a deep autoencoder, then predict the relation score of the pair by a deep neural network. Fivefold cross-validation results on the benchmark dataset showed that our model outperforms state-of-the-art prediction methods in the literature with the AUC score of 0.9794.


Assuntos
Redes Neurais de Computação , RNA Circular , Humanos , RNA Circular/genética , RNA/genética , Biologia Computacional/métodos
3.
Environ Toxicol ; 39(3): 1245-1257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927243

RESUMO

Diisononyl phthalate (DINP) and di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) are plasticizers introduced to replace previously used phthalate plasticizers in polymeric products. Exposure to DINP and DINCH has been shown to impact lipid metabolism. However, there are limited studies that address the mechanisms of toxicity of these two plasticizers. Here, a comparative toxicity analysis has been performed to evaluate the impacts of DINP and DINCH on 3T3-L1 cells. The preadipocyte 3T3-L1 cells were exposed to 1, 10, and 100 µM of DINP or DINCH for 10 days and assessed for lipid accumulation, gene expression, and protein analysis. Lipid staining showed that higher concentrations of DINP and DINCH can induce adipogenesis. The gene expression analysis demonstrated that both DINP and DINCH could alter the expression of lipid-related genes involved in adipogenesis. DINP and DINCH upregulated Pparγ, Pparα, C/EBPα Fabp4, and Fabp5, while both compounds significantly downregulated Fasn and Gata2. Protein analysis showed that both DINP and DINCH repressed the expression of FASN. Additionally, we analyzed an independent transcriptome dataset encompassing temporal data on lipid differentiation within 3T3-L1 cells. Subsequently, we derived a gene set that accurately portrays significant pathways involved in lipid differentiation, which we subsequently subjected to experimental validation through quantitative polymerase chain reaction. In addition, we extended our analysis to encompass a thorough assessment of the expression profiles of this identical gene set across 40 discrete transcriptome datasets that have linked to diverse pathological conditions to foreseen any potential association with DINP and DINCH exposure. Comparative analysis indicated that DINP could be more effective in regulating lipid metabolism.


Assuntos
Ácidos Cicloexanocarboxílicos , Ácidos Ftálicos , Animais , Camundongos , Plastificantes/toxicidade , Metabolismo dos Lipídeos , Células 3T3-L1 , Ácidos Cicloexanocarboxílicos/toxicidade , Ácidos Dicarboxílicos/toxicidade , Ácidos Ftálicos/toxicidade , Cicloexanos , Lipídeos
4.
OMICS ; 27(10): 483-493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861711

RESUMO

Chronic inflammation is an important contributor to tumorigenesis in many tissues. However, the underlying mechanisms of inflammatory signaling in the tumor microenvironment are not yet fully understood in various cancers. Therefore, this study aimed to uncover the gene expression signatures of inflammation-associated proteins that lead to tumorigenesis, and with an eye to discovery of potential system biomarkers and novel drug candidates in oncology. Gene expression profiles associated with 12 common cancers (e.g., breast invasive carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma) from The Cancer Genome Atlas were retrieved and mapped to inflammation-related gene sets. Subsequently, the inflammation-associated differentially expressed genes (i-DEGs) were determined. The i-DEGs common in all cancers were proposed as tumor inflammation signatures (TIS) after pan-cancer analysis. A TIS, consisting of 45 proteins, was evaluated as a potential system biomarker based on its prognostic forecasting and secretion profiles in multiple tissues. In addition, i-DEGs for each cancer type were used as queries for drug repurposing. Narciclasine, parthenolide, and homoharringtonine were identified as potential candidates for drug repurposing. Biomarker candidates in relation to inflammation were identified such as KNG1, SPP1, and MIF. Collectively, these findings inform precision diagnostics development to distinguish individual cancer types, and can also pave the way for novel prognostic decision tools and repurposed drugs across multiple cancers. These new findings and hypotheses warrant further research toward precision/personalized medicine in oncology. Pan-cancer analysis of inflammatory mediators can open up new avenues for innovation in cancer diagnostics and therapeutics.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Neoplasias do Colo , Humanos , Feminino , Biologia de Sistemas , Perfilação da Expressão Gênica , Carcinogênese , Biomarcadores , Inflamação/genética , Microambiente Tumoral/genética
5.
OMICS ; 27(8): 381-392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540140

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic disease of the lung with poor prognosis. Fibrosis results from remodeling of the interstitial tissue. A wide range of gene expression changes are observed, but the role of micro RNAs (miRNAs) and circular RNAs (circRNA) is still unclear. Therefore, this study aimed to establish an messenger RNA (mRNA)-miRNA-circRNA competing endogenous RNA (ceRNA) regulatory network to uncover novel molecular signatures using systems biology tools. Six datasets were used to determine differentially expressed genes (DEGs) and miRNAs (DEmiRNA). Accordingly, protein-protein, mRNA-miRNA, and miRNA-circRNA interactions were constructed. Modules were determined and further analyzed in the Drug Gene Budger platform to identify potential therapeutic compounds. We uncovered common 724 DEGs and 278 DEmiRNAs. In the protein-protein interaction network, TMPRSS4, ESR2, TP73, CLEC4E, and TP63 were identified as hub protein coding genes. The mRNA-miRNA interaction network revealed two modules composed of ADRA1A, ADRA1B, hsa-miR-484 and CDH2, TMPRSS4, and hsa-miR-543. The DEmiRNAs in the modules further analyzed to propose potential circRNA regulators in the ceRNA network. These results help deepen the understanding of the mechanisms of IPF. In addition, the molecular leads reported herein might inform future innovations in diagnostics and therapeutics research and development for IPF.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Mapas de Interação de Proteínas/genética , Fibrose Pulmonar Idiopática/genética , Redes Reguladoras de Genes
6.
Front Oncol ; 13: 1096081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761959

RESUMO

Introduction: Integrating interaction data with biological knowledge can be a critical approach for drug development or drug repurposing. In this context, host-pathogen-protein-protein interaction (HP-PPI) networks are useful instrument to uncover the phenomena underlying therapeutic effects in infectious diseases, including cervical cancer, which is almost exclusively due to human papillomavirus (HPV) infections. Cervical cancer is one of the second leading causes of death, and HPV16 and HPV18 are the most common subtypes worldwide. Given the limitations of traditionally used virus-directed drug therapies for infectious diseases and, at the same time, recent cancer statistics for cervical cancer cases, the need for innovative treatments becomes clear. Methods: Accordingly, in this study, we emphasize the potential of host proteins as drug targets and identify promising host protein candidates for cervical cancer by considering potential differences between HPV subtypes (i.e., HPV16 and HPV18) within a novel bioinformatics framework that we have developed. Subsequently, subtype-specific HP-PPI networks were constructed to obtain host proteins. Using this framework, we next selected biologically significant host proteins. Using these prominent host proteins, we performed drug repurposing analysis. Finally, by following our framework we identify the most promising host-oriented drug candidates for cervical cancer. Results: As a result of this framework, we discovered both previously associated and novel drug candidates, including interferon alfacon-1, pimecrolimus, and hyaluronan specifically for HPV16 and HPV18 subtypes, respectively. Discussion: Consequently, with this study, we have provided valuable data for further experimental and clinical efforts and presented a novel bioinformatics framework that can be applied to any infectious disease.

7.
OMICS ; 26(7): 392-403, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35763314

RESUMO

Acute myeloid leukemia (AML) is a common, complex, and multifactorial malignancy of the hematopoietic system. AML diagnosis and treatment outcomes display marked heterogeneity and patient-to-patient variations. To date, AML-related biomarker discovery research has employed single omics inquiries. Multiomics analyses that reconcile and integrate the data streams from multiple levels of the cellular hierarchy, from genes to proteins to metabolites, offer much promise for innovation in AML diagnostics and therapeutics. We report, in this study, a systems medicine and multiomics approach to integrate the AML transcriptome data and reporter biomolecules at the RNA, protein, and metabolite levels using genome-scale biological networks. We utilized two independent transcriptome datasets (GSE5122, GSE8970) in the Gene Expression Omnibus database. We identified new multiomics molecular signatures of relevance to AML: miRNAs (e.g., mir-484 and miR-519d-3p), receptors (ACVR1 and PTPRG), transcription factors (PRDM14 and GATA3), and metabolites (in particular, amino acid derivatives). The differential expression profiles of all reporter biomolecules were crossvalidated in independent RNA-Seq and miRNA-Seq datasets. Notably, we found that PTPRG holds important prognostication potential as evaluated by Kaplan-Meier survival analyses. The multiomics relationships unraveled in this analysis point toward the genomic pathogenesis of AML. These multiomics molecular leads warrant further research and development as potential diagnostic and therapeutic targets.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , MicroRNAs/genética , Análise de Sistemas , Transcriptoma/genética
8.
Front Pharmacol ; 13: 884548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770086

RESUMO

Cervical cancer is the fourth most commonly diagnosed cancer worldwide and, in almost all cases is caused by infection with highly oncogenic Human Papillomaviruses (HPVs). On the other hand, inflammation is one of the hallmarks of cancer research. Here, we focused on inflammatory proteins that classify cervical cancer patients by considering individual differences between cancer patients in contrast to conventional treatments. We repurposed anti-inflammatory drugs for therapy of HPV-16 and HPV-18 infected groups, separately. In this study, we employed systems biology approaches to unveil the diagnostic and treatment options from a precision medicine perspective by delineating differential inflammation-associated biomarkers associated with carcinogenesis for both subtypes. We performed a meta-analysis of cervical cancer-associated transcriptomic datasets considering subtype differences of samples and identified the differentially expressed genes (DEGs). Using gene signature reversal on HPV-16 and HPV-18, we performed both signature- and network-based drug reversal to identify anti-inflammatory drug candidates against inflammation-associated nodes. The anti-inflammatory drug candidates were evaluated using molecular docking to determine the potential of physical interactions between the anti-inflammatory drug and inflammation-associated nodes as drug targets. We proposed 4 novels anti-inflammatory drugs (AS-601245, betamethasone, narciclasin, and methylprednisolone) for the treatment of HPV-16, 3 novel drugs for the treatment of HPV-18 (daphnetin, phenylbutazone, and tiaprofenoic acid), and 5 novel drugs (aldosterone, BMS-345541, etodolac, hydrocortisone, and prednisolone) for the treatment of both subtypes. We proposed anti-inflammatory drug candidates that have the potential to be therapeutic agents for the prevention and/or treatment of cervical cancer.

9.
OMICS ; 26(3): 115-129, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172108

RESUMO

Innovation roadmaps are important, because they encourage the actors in an innovation ecosystem to creatively imagine multiple possible science future(s), while anticipating the prospects and challenges on the innovation trajectory. In this overarching context, this expert review highlights the present unmet need for therapeutic innovations for pituitary neuroendocrine tumors (PitNETs), also known as pituitary adenomas. Although there are many drugs used in practice to treat PitNETs, many of these drugs can have negative side effects and show highly variable outcomes in terms of overall recovery. Building innovation roadmaps for PitNETs' treatments can allow incorporation of systems biology approaches to bring about insights at multiple levels of cell biology, from genes to proteins to metabolites. Using the systems biology techniques, it will then be possible to offer potential therapeutic strategies for the convergence of preventive approaches and patient-centered disease treatment. Here, we first provide a comprehensive overview of the molecular subtypes of PitNETs and therapeutics for these tumors from the past to the present. We then discuss examples of clinical trials and drug repositioning studies and how multi-omics studies can help in discovery and rational development of new therapeutics for PitNETs. Finally, this expert review offers new public health and personalized medicine approaches on cases that are refractory to conventional treatment or recur despite currently used surgical and/or drug therapy.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Reposicionamento de Medicamentos , Ecossistema , Humanos , Recidiva Local de Neoplasia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo
10.
Arch Biochem Biophys ; 715: 109085, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800440

RESUMO

The identification of biomolecules associated with papillary thyroid cancer (PTC) has upmost importance for the elucidation of the disease mechanism and the development of effective diagnostic and treatment strategies. Despite particular findings in this regard, a holistic analysis encompassing molecular data from different biological levels has been lacking. In the present study, a meta-analysis of four transcriptome datasets was performed to identify gene expression signatures in PTC, and reporter molecules were determined by mapping gene expression data onto three major cellular networks, i.e., transcriptional regulatory, protein-protein interaction, and metabolic networks. We identified 282 common genes that were differentially expressed in all PTC datasets. In addition, six proteins (FYN, JUN, LYN, PML, SIN3A, and RARA), two Erb-B2 receptors (ERBB2 and ERBB4), two cyclin-dependent receptors (CDK1 and CDK2), and three histone deacetylase receptors (HDAC1, HDAC2, and HDAC3) came into prominence as proteomic signatures in addition to several metabolites including lactaldehyde and proline at the metabolome level. Significant associations with calcium and MAPK signaling pathways and transcriptional and post-transcriptional activities of 12 TFs and 110 miRNAs were also observed at the regulatory level. Among them, six miRNAs (miR-30b-3p, miR-15b-5p, let-7a-5p, miR-130b-3p, miR-424-5p, and miR-193b-3p) were associated with PTC for the first time in the literature, and the expression levels of miR-30b-3p, miR-15b-5p, and let-7a-5p were found to be predictive of disease prognosis. Drug repositioning and molecular docking simulations revealed that 5 drugs (prochlorperazine, meclizine, rottlerin, cephaeline, and tretinoin) may be useful in the treatment of PTC. Consequently, we report here biomolecule candidates that may be considered as prognostic biomarkers or potential therapeutic targets for further experimental and clinical trials for PTC.


Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Antineoplásicos/metabolismo , Reposicionamento de Medicamentos , Expressão Gênica/fisiologia , Perfilação da Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteômica , Transcriptoma/fisiologia
11.
OMICS ; 25(8): 495-512, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34297901

RESUMO

Esophageal squamous cell carcinoma (ESCC) is among the most dangerous cancers with high mortality and lack of robust diagnostics and personalized/precision therapeutics. To achieve a systems-level understanding of tumorigenesis, unraveling of variations in the protein interactome and determination of key proteins exhibiting significant alterations in their interaction patterns during tumorigenesis are crucial. To this end, we have described differential protein-protein interactions and differentially interacting proteins (DIPs) in ESCC by utilizing the human protein interactome and transcriptome. Furthermore, DIP-centered modules were analyzed according to their potential in elucidation of disease mechanisms and improvement of efficient diagnostic, prognostic, and treatment strategies. Seven modules were presented as potential diagnostic, and 16 modules were presented as potential prognostic biomarker candidates. Importantly, our findings also suggest that 30 out of the 53 repurposed drugs were noncancer drugs, which could be used in the treatment of ESCC. Interestingly, 25 of these, proposed as novel drug candidates here, have not been previously associated in a context of esophageal cancer. In this context, risperidone and clozapine were validated for their growth inhibitory potential in three ESCC lines. Our findings offer a high potential for the development of innovative diagnostic, prognostic, and therapeutic strategies for further experimental studies in line with predictive diagnostics, targeted prevention, and personalization of medical services in ESCC specifically, and personalized cancer care broadly.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Transcriptoma
12.
World J Gastrointest Oncol ; 13(7): 638-661, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34322194

RESUMO

Colorectal cancer (CRC) is the most commonly diagnosed fatal cancer in both women and men worldwide. CRC ranked second in mortality and third in incidence in 2020. It is difficult to diagnose CRC at an early stage as there are no clinical symptoms. Despite advances in molecular biology, only a limited number of biomarkers have been translated into routine clinical practice to predict risk, prognosis and response to treatment. In the last decades, systems biology approaches at the omics level have gained importance. Over the years, several biomarkers for CRC have been discovered in terms of disease diagnosis and prognosis. On the other hand, a few drugs are being developed and used in clinics for the treatment of CRC. However, the development of new drugs is very costly and time-consuming as the research and development takes about 10 years and more than $1 billion. Therefore, drug repositioning (DR) could save time and money by establishing new indications for existing drugs. In this review, we aim to provide an overview of biomarkers for the diagnosis and prognosis of CRC from the systems biology perspective and insights into DR approaches for the prevention or treatment of CRC.

13.
J Pers Med ; 11(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672926

RESUMO

Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.

14.
OMICS ; 25(3): 139-168, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404348

RESUMO

Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.


Assuntos
Glicômica/métodos , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Biomarcadores/metabolismo , Glicoproteínas/genética , Glicosilação , Humanos , Medicina de Precisão
15.
Front Bioinform ; 1: 710591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303724

RESUMO

There is a critical requirement for alternative strategies to provide the better treatment in colorectal cancer (CRC). Hence, our goal was to propose novel biomarkers as well as drug candidates for its treatment through differential interactome based drug repositioning. Differentially interacting proteins and their modules were identified, and their prognostic power were estimated through survival analyses. Drug repositioning was carried out for significant target proteins, and candidate drugs were analyzed via in silico molecular docking prior to in vitro cell viability assays in CRC cell lines. Six modules (mAPEX1, mCCT7, mHSD17B10, mMYC, mPSMB5, mRAN) were highlighted considering their prognostic performance. Drug repositioning resulted in eight drugs (abacavir, ribociclib, exemestane, voriconazole, nortriptyline hydrochloride, theophylline, bromocriptine mesylate, and tolcapone). Moreover, significant in vitro inhibition profiles were obtained in abacavir, nortriptyline hydrochloride, exemestane, tolcapone, and theophylline (positive control). Our findings may provide new and complementary strategies for the treatment of CRC.

16.
Semin Cancer Biol ; 68: 47-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568815

RESUMO

Drug repositioning is a powerful method that can assists the conventional drug discovery process by using existing drugs for treatment of a disease rather than its original indication. The first examples of repurposed drugs were discovered serendipitously, however data accumulated by high-throughput screenings and advancements in computational biology methods have paved the way for rational drug repositioning methods. As chemotherapeutic agents have notorious side effects that significantly reduce quality of life, drug repositioning promises repurposed noncancer drugs with little or tolerable adverse effects for cancer patients. Here, we review current drug-related data types and databases including some examples of web-based drug repositioning tools. Next, we describe systems biology approaches to be used in drug repositioning for effective cancer therapy. Finally, we highlight examples of mostly repurposed drugs for cancer treatment and provide an overview of future expectations in the field for development of effective treatment strategies.


Assuntos
Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Biologia de Sistemas/métodos , Animais , Humanos
17.
Brain Sci ; 10(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080834

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with deficits in social communication ability and repetitive behavior. The pathophysiological events involved in the brain of this complex disease are still unclear. METHODS: In this study, we aimed to profile the gene expression signatures of brain cortex of ASD patients, by using two publicly available RNA-seq studies, in order to discover new ASD-related genes. RESULTS: We detected 1567 differentially expressed genes (DEGs) by meta-analysis, where 1194 were upregulated and 373 were downregulated genes. Several ASD-related genes previously reported were also identified. Our meta-analysis identified 235 new DEGs that were not detected using the individual RNA-seq studies used. Some of those genes, including seven DEGs (PAK1, DNAH17, DOCK8, DAPP1, PCDHAC2, and ERBIN, SLC7A7), have been confirmed in previous reports to be associated with ASD. Gene Ontology (GO) and pathways analysis showed several molecular pathways enriched by the DEGs, namely, osteoclast differentiation, TNF signaling pathway, complement and coagulation cascade. Topological analysis of protein-protein interaction of the ASD brain cortex revealed proteomics hub gene signatures: MYC, TP53, HDAC1, CDK2, BAG3, CDKN1A, GABARAPL1, EZH2, VIM, and TRAF1. We also identified the transcriptional factors (TFs) regulating DEGs, namely, FOXC1, GATA2, YY1, FOXL1, USF2, NFIC, NFKB1, E2F1, TFAP2A, HINFP. CONCLUSION: Novel core genes and molecular signatures involved with ASD were identified by our meta-analysis.

18.
Front Oncol ; 10: 1273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903699

RESUMO

Colorectal cancer (CRC) is one of the most fatal types of cancers that is seen in both men and women. CRC is the third most common type of cancer worldwide. Over the years, several drugs are developed for the treatment of CRC; however, patients with advanced CRC can be resistant to some drugs. P-glycoprotein (P-gp) (also known as Multidrug Resistance 1, MDR1) is a well-identified membrane transporter protein expressed by ABCB1 gene. The high expression of MDR1 protein found in several cancer types causes chemotherapy failure owing to efflux drug molecules out of the cancer cell, decreases the drug concentration, and causes drug resistance. As same as other cancers, drug-resistant CRC is one of the major obstacles for effective therapy and novel therapeutic strategies are urgently needed. Network-based approaches can be used to determine specific biomarkers, potential drug targets, or repurposing approved drugs in drug-resistant cancers. Drug repositioning is the approach for using existing drugs for a new therapeutic purpose; it is a highly efficient and low-cost process. To improve current understanding of the MDR-1-related drug resistance in CRC, we explored gene co-expression networks around ABCB1 gene with different network sizes (50, 100, 150, 200 edges) and repurposed candidate drugs targeting the ABCB1 gene and its co-expression network by using drug repositioning approach for the treatment of CRC. The candidate drugs were also assessed by using molecular docking for determining the potential of physical interactions between the drug and MDR1 protein as a drug target. We also evaluated these four networks whether they are diagnostic or prognostic features in CRC besides biological function determined by functional enrichment analysis. Lastly, differentially expressed genes of drug-resistant (i.e., oxaliplatin, methotrexate, SN38) HT29 cell lines were found and used for repurposing drugs with reversal gene expressions. As a result, it is shown that all networks exhibited high diagnostic and prognostic performance besides the identification of various drug candidates for drug-resistant patients with CRC. All these results can shed light on the development of effective diagnosis, prognosis, and treatment strategies for drug resistance in CRC.

19.
Sci Rep ; 10(1): 3272, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094374

RESUMO

Deciphering the variations in the protein interactome is required to reach a systems-level understanding of tumorigenesis. To accomplish this task, we have considered the clinical and transcriptome data on >6000 samples from The Cancer Genome Atlas for 12 different cancers. Utilizing the gene expression levels as a proxy, we have identified the differential protein-protein interactions in each cancer type and presented a differential view of human protein interactome among the cancers. We clearly demonstrate that a certain fraction of proteins differentially interacts in the cancers, but there was no general protein interactome profile that applied to all cancers. The analysis also provided the characterization of differentially interacting proteins (DIPs) representing significant changes in their interaction patterns during tumorigenesis. In addition, DIP-centered protein modules with high diagnostic and prognostic performances were generated, which might potentially be valuable in not only understanding tumorigenesis, but also developing effective diagnosis, prognosis, and treatment strategies.


Assuntos
Neoplasias/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Algoritmos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Estimativa de Kaplan-Meier , Metástase Neoplásica , Fenótipo , Análise de Componente Principal , Prognóstico , Transcriptoma
20.
Heliyon ; 6(2): e03440, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32095654

RESUMO

Clear cell renal cell carcinoma (ccRCC) accounts for 70-80% of kidney cancer diagnoses and displays high molecular and histologic heterogeneity. Hence, it is necessary to reveal the underlying molecular mechanisms involved in progression of ccRCC to better stratify the patients and design effective treatment strategies. Here, we analyzed the survival outcome of ccRCC patients as a consequence of the differential expression of four transcript isoforms of the pyruvate kinase muscle type (PKM). We first extracted a classification biomarker consisting of eight gene pairs whose within-sample relative expression orderings (REOs) could be used to robustly classify the patients into two groups with distinct molecular characteristics and survival outcomes. Next, we validated our findings in a validation cohort and an independent Japanese ccRCC cohort. We finally performed drug repositioning analysis based on transcriptomic expression profiles of drug-perturbed cancer cell lines and proposed that paracetamol, nizatidine, dimethadione and conessine can be repurposed to treat the patients in one of the subtype of ccRCC whereas chenodeoxycholic acid, fenoterol and hexylcaine can be repurposed to treat the patients in the other subtype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...